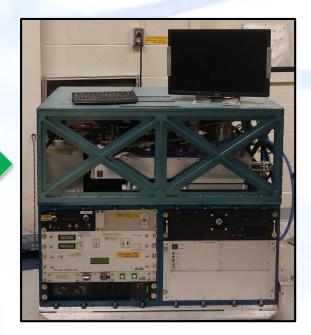


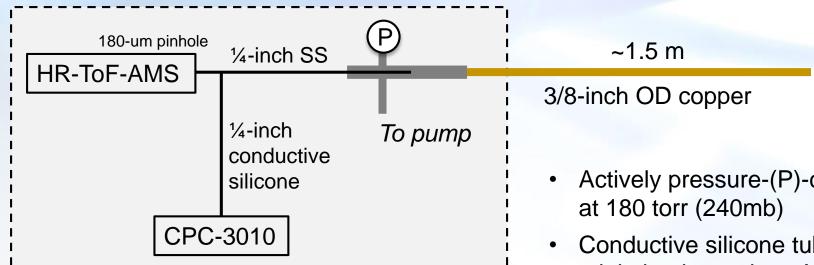
Aerosol Mass Spectrometer (HR-ToF-AMS) In-Flight Aircraft Emissions Sampling

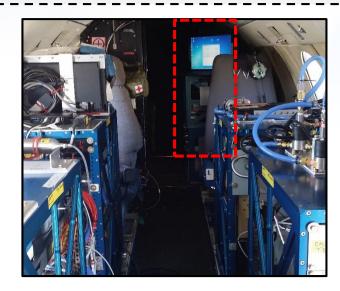
ACCESS-II Data Workshop
Luke Ziemba and LARGE team
NASA Langley Research Center
January 9, 2015

AMS Measurements: Objectives


- 1. Demonstrate the Aerodyne-AMS technique has sufficient sensitivity and time-response to make *in-flight* chemical composition measurements of the **volatile coatings** on aircraft soot emissions
- 2. Assess the variability in aerosol composition for different fuels:
 - Organic mass fraction
 - Organic oxidative state
- 3. Assess the contribution of lubrication oils to volatile organic emissions

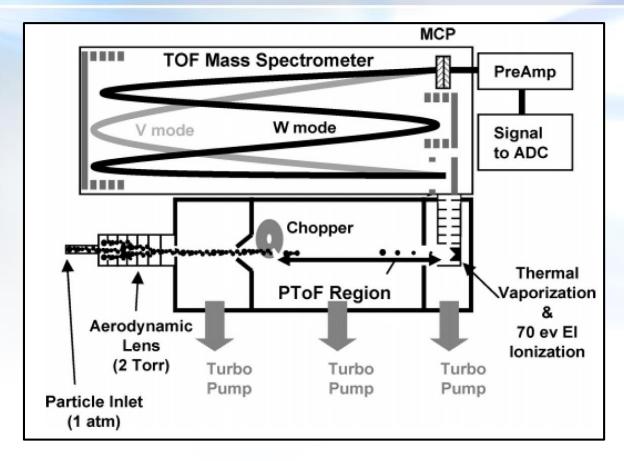
AMS Repackaging for Flight


- 1-inch 80/20 structure not suitable for aircraft deployment
- 53-inch height cannot fit in smaller aircraft (NASA Falcon)
- Single-body mounting is not practical for integration
- Weight = 430 lbs.


- Custom, aircraft-rated hardware manufactured by WMD,Inc.
- Structural analysis provided
- Height reduced to 35-inch
- 3 independent structures can be integrated separately.
- Weight = 492 lbs. including CPC

AMS Measurement Technique: Sampling

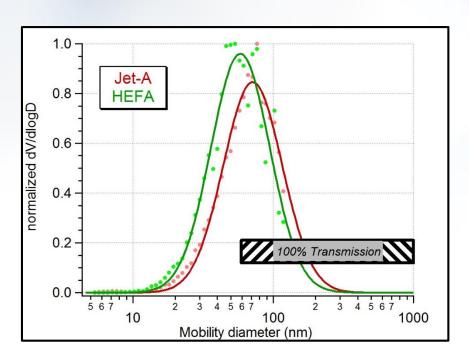
AMS-rack


Himel Inlet

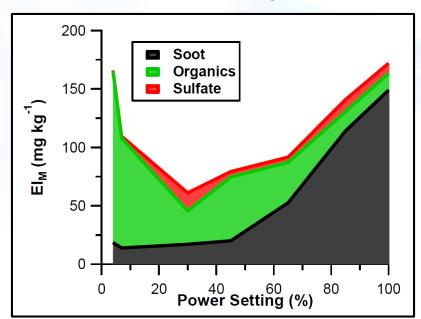
From

- Actively pressure-(P)-controlled
- Conductive silicone tubing minimized to reduce AMSartifact
- CPC used to decrease residence time during transport to AMS; also provides redundant measurement

AMS Measurement Technique



Size-resolved chemical composition of non-refractory aerosols

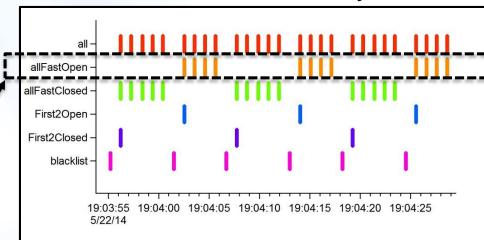


AMS Measurement Technique: Limitations

- AMS lower-size limit is ~60nm diameter
 - ** Suitable for most ambient observations of aerosol mass
 - ** Not optimal for observing aircraft emissions due to small particle size

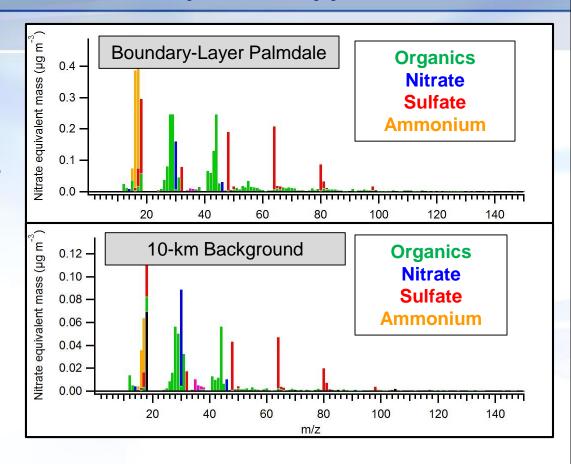
- AMS only observes non-refractory aerosol mass, volatile at 600°C
 - ** suitable for ambient obs. when BC contribution is < 5%
 - ** Not optimal for aircraft emissions depending on thrust

Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

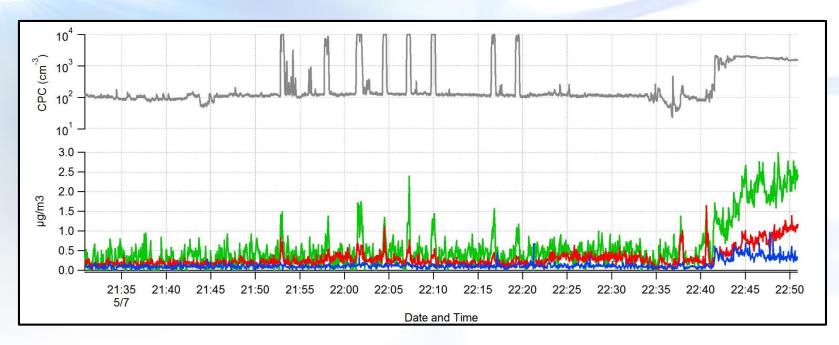

A. J. Beyersdorf¹, M. T. Timko^{2,*}, L. D. Ziemba¹, D. Bulzan³, E. Corporan⁴, S. C. Herndon², R. Howard⁵, R. Miake-Lye², K. L. Thornhill^{1,6}, E. Winstead^{1,6}, C. Wey³, Z. Yu², and B. E. Anderson¹

AMS Measurement Technique: FAST-MS Mode

- AMS is typically operated in alternating mode: cycling between open-MS, closed-MS, and pTOF modes (> 1 minute save rates)
 - Allows sufficient signal-to-noise
 - fast response is not necessary for ground applications
- Fast-mode saves data at 1 Hz
 - Sacrifices SNR for fast response
 - No particle sizing is obtained
 - Relies on 'stable' conditions for a 10-sec period to accurately calculate difference spectra and obtain particle-phase composition



AMS Measurement Technique: MS Apportionment


- AMS uses known fragmentation patterns to apportion mass-spectral peaks to common aerosol types
- m/z44 is typically dominant for ambient aerosol (oxidized organics).
 - m/z44 must be corrected using a measurement of CO₂ for aircraft emissions

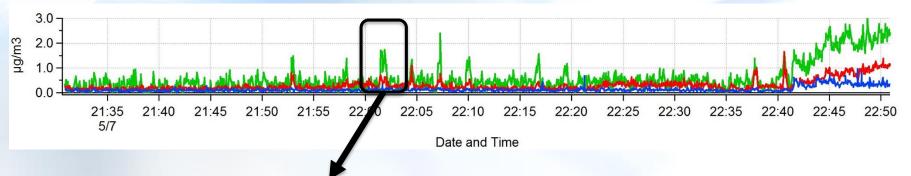
- Generally similar contributions in free troposphere as BL
- Increased nitrate importance at low temp.

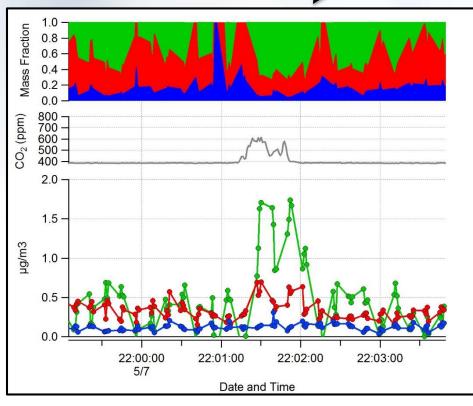
NASA

AMS Measurements: First Flight (5/7)

Background Conditions:

- 10² cm⁻³
 - Organics = $0.28 \pm 0.25 \,\mu g \, m^{-3}$
 - Sulfate = $0.18 \pm 0.06 \,\mu g \, m^{-3}$
 - Nitrate = $0.09 \pm 0.04 \, \mu g \, m^{-3}$


Exhaust Plumes:

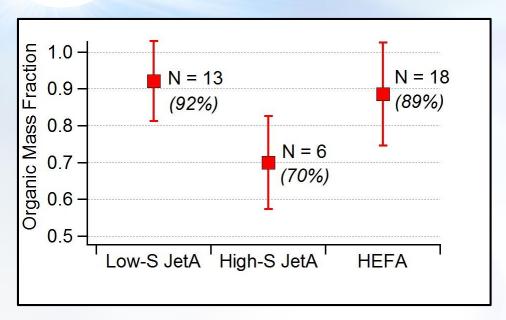

- 10⁴ cm⁻³
 - Organics = $1.0 2.5 \, \mu g \, m^{-3}$
 - Sulfate = $0.5 1.0 \, \mu g \, m^{-3}$
 - Nitrate ~ 0.1 μg m⁻³

Preliminary

AMS Measurements: First Flight

Background:

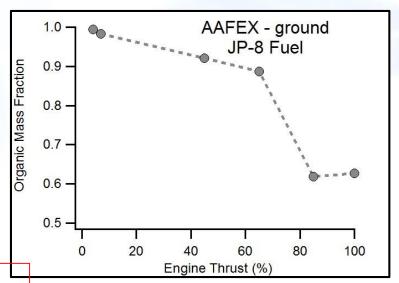
- 386 ppm CO₂
 - Organics ~ 39% (mass)


JP-8 Plume:

- 4 save periods
- Δ 150 ppm CO₂
 - Organics ~ 67% (mass)

AMS Measurements:

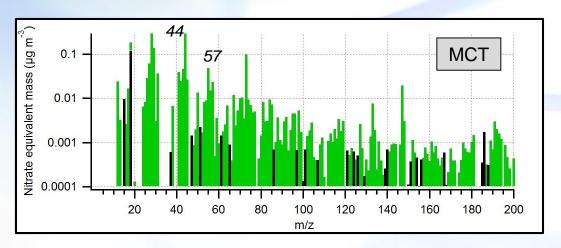
Fuel Properties Alter Aerosol Composition

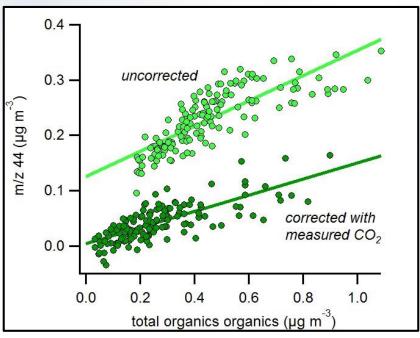


	Low-S	High-S	HEFA
	JetA	JetA	Blend
Sulfur (ppm)	20	426	9

ACCESS-II

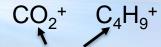
- Organic compounds dominate the Low-S JetA and HEFA-blend emissions (~90%)
- Sulfate contribution is increased for JetA
- Results are qualitatively consistent with ground-based measurements at higher engine thrust


 Preliminary



AMS Measurements: Extent of Organic Oxidation

- Engine-2
- 5/22 Flight
- Fuel = HighS JetA



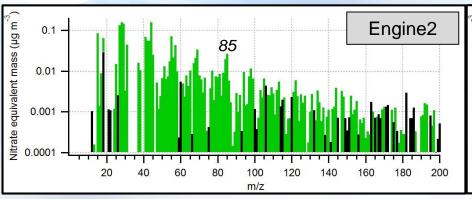
- m/z44 (CO₂+) used as a tracer for oxidized organics
- Enhanced CO₂ from combustion significantly impacts organic aerosol quantification
- After correction, organic aircraft emissions still contain oxygenated compounds (15% of organic signal)
- Ratio of m44 to m57 is a general indicator of the state of oxidation

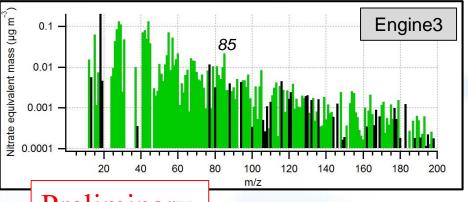
NASA

AMS Measurements: Aerosol Extent of Oxidation

m/z 44/57 used as a proxy for the extent of organic oxidation

- No significant difference observed between fuels
- Oxygen content LOW compared to ambient aerosols


 Organic coatings are more oxidized for NON-contrail (clear) conditions


10

 Contrail may alter aerosol composition by removal of moresoluble compounds

AMS Measurements: Lubrication Oil Contribution

Alkanes	ExxonMobil	BP	ACCESS-II
(combustion)	Oil	Oil	
0.66	8.6	3.7	3.1

- mz85/71 values >> 0.66 → lube-oils
- Data from all flights shows significant contribution throughout ACCESS-2
 - Must identify the oil used during ACCESS to quantify contribution
- Both engines exhibit similar lube-oil impacts

[Yu et al. 2010, 2012]

Conclusions and Future Work

- The AMS technique is able to sufficiently resolve near-field aircraft emissions plumes
- Measured volatile coatings are dominated by organic compounds
 - Low-sulfur HEFA and JetA fuels (11 and 8%) resulted in significantly less sulfate than High-S JetA fuel (30%)
- 3. Fuels had similar contribution from oxygenated compounds
 - Oxygenated (water-soluble) compounds may be preferentially removed in contrail conditions
- 4. Lubrication oil was likely a dominant fraction of measured organic mass

Thanks: NASA, ACCESS-II collaborators, LARGE team and aircraft crews!